fiD-A131 495

UNCLASSIFIED

FLEXIBLE PARSING(U) CARNEGIE I
OF COMPUTER SCIENCE F J
RFOSR TR-83-0667 F49628-79-C-81

NST UF TECH PITTSBURGH PR
HHV 22 0OCT 82

F/G 9/

_
J

W RIL S N

- s

PARLOOA SN

L

pA

AR AR A

Ny

o8 W KAt

‘

PR

m—m_m_mﬂ.m %

NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART

= = = !

N e L A R MR LA SR e R SR LT VeV a T WL Ca ™ ;,_w NG it v, N R T AT U I W A Gl it e A iy, ApfL st e

P/ﬂa/

FIexane Parsmg “ Techmcal Report

- Uy PhillpJ. Hayes

.
4

© AFOSR-TR- 88-0667

e e

P

=,
>

s

i m Computer Science Department, Carnegie-Meflon University

Ay Pittsburgh, PA 15213

2 - :

E ™y _ Abstract

N o When people use language spontaneously, they often do not adhere strictly to commonly accepted

§ standards of grammaticality. The primary objective of this project is to develop flexible computer

; < parsing technigues which can deal with the various kinds of ungrammaticalities that arise, both on the

ical and th X '

g lexical e phrase level

§ : The progress towards this goal covered by this report includes:

Y) '

3}; o The completion of the development and the evaluation of CASPAR and DYPAR, two

o experimental parsers based on the construction-specific approach to parsing, this

% approach having been formulated through experience with FlexP, a flexible parser

% developed earlier under this contract.

;i o Further development of the oonstrucgion-speolfic approach to parsing through the design

§ : and construction of MULTIPAR. Like CASPAR and DYPAR, MULTIPAR is based on
construction-specific parsing techniques, but aims for much greater linguistic coverage,

serving as a vehicle to test whether the construction-specific approach scales up in a

; more realistic parser., In particular, this work involved development of additional

construction-specific parsing strategies and of a control structure through which a large

;\ number of such strategies could be coordinated on the parsing of a single input.

¢ Additional application of the construction-specific approach to flexible parsing to the
parsing of an artificial command language in the parser for the CousiN command . 7
interface, a graceful interface for the Unix operating system being developad largely
under other funding. This effort represents a paraliel track of development and proving
ground for the construction-speciﬁc approach to parsing.

[R o

; al _

3 8 Approved for pudlie releass? !
3 distridbution undimited. i
y [W) K
i = : - :
y . DTIC

; § ' ' . ELECTE ;
{ : ;
L B Y [mm i
D !

o

F

(o
-lm 4

P

e

N

O S e
—

Lo

L R R R I R N W e M N L N A R T AR\ PTG AT 8w T a %5 ™0 ™ @ P T3 il

SHCURTY CLASSIFICATION OF THIS PAGE (Mhen Date Snfered)

REPORT DOCUMENTATION PAGE BEFORE ML S TmONS au
= ; CIPIENT'S CATALOG NUMBER 1
2. 8 3_ o 667 r.cowu:umouno 3 RE
AD -A131495

8. TYPE OF REPORT & PERIOD COVERED

FINAL, 1 JUL 81-30 JUN 82
6. PERFORMING ORG. REPORT NUMBER

9. CONTRACT OR GRANT NUMBER(s)

Philip J. Hayes F49620-79-C-0143

9. PERFORMING ONGANIZATION NAME AND ADDRESS
Computer Science Department
Carnegie-Mellon University
Pittsburgh PA 15213

11. CONTROLLING GFFICE NAME AND ADDRESS
Mathematical & Information Sciences Directorate 22 October 1982

Air Force Office of Scientific Research 13. NUMBER OF PAGES
Bolling AFB DC 20332 14

1T UONTTORING AGENCY NAME & ADDRESI(I7 @ifferent from Centroliing Office) | 15, SECURITY CLASS, (of this report)

10. P:oclAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

PE61102F; 2304/A2

12. REPORT DATE

UNCLASSIFIED
Ba. o:cknssmcu"'m/oowucuomc
SCMEODULE

[16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if ditferent from Report)

P—-—-——-—
9. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue en reverse side i necossary and idontify by Bock number)
Applied natural language; flexible parsing; bottom-up parsing; friendly
interfaces; construction-specific parsing; multi-strategy parsing.

[T0. ABSTRACT (Conifnue on reveres side If nocescary and identity by Bi 'k momber)

me people use language spontaneously, the, often do not adhere strictly to
commonly accepted standards of grammaticaliiy. The primary objective of this
project is to develop flexible computer pars.ng techniques which can deal with

the various kinds of ungrammaticalities that arise, both on %the lexical and
the phrase level.

The progress towards this goal covered by this report includes:

(1) The completion of the development and the evaluation of (CONTINUED)

ronm
0D , 2%, 1473 LASSIFT
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

.
LYY

AT L R, vt SR A A AT A

- e T TR, T AT W (T AR LY, AT AT T T e T v e
N RSN e P i 50 P S A D o ST At g S it PR LI A Pl R A S S S “TeT -

“WNTV CLASSIFICATION OF THIS PAGE(When Dete Entered)

-.-.-;-.-“-1

|
{

[y €
ITEN #20, CONTINUED: CASPAR and DYPAR, two experimental parsers based on the
construction-specific approach to parsing, this approach having been formulated

through experience with FlexP, a flexible parser developed earlier under this
contract.

{(2) Further development of the construction-specific approach to parsing
through the design and construction of MULTIPAR. Like CASPAR and DYPAR,
NULTIPAR is based on construction-specific parsing techniques, but aims for much
greater lingmistic coverage, serving as a vehicle to test whether the
construction-specific approach scales up in a more realistic parser. - In particu-
lar, this work involved development of additional construction-specific parsing
strategies and of a control structure through which a large number of such
strategies could be coordinated on the parsing of a single input.

(3) Additional application of the construction-specific approach to flexible
parsing to the parsing of an artificial command language in the parser for the
COUSIN command interface, a graceful interface for the Unix operating system
being developed largely under other funding. This effort represents a parallel

track of development and proving ground for the construction-specific approach
to parsing.

Accession For
NTIS GRAXI

DTIC TAB Jﬁ(

Unannounced O
Justification

By.
{ Distribution/

Av;_l;ability Codes
(Avau and/or

¢
!

Dist Special

i

%
=]

'»

i
&

3

&

. & o’ . '

" '

A UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS P AGE(When Date Entered)

'y{:

‘1‘.," s 4 - -, R sl Tl Pl 2% 2 Y - hAJRY .-Nﬁ_,-‘

e s * P " PR e o .x\ ” DRI

By AN A a3 T L T v o T Re L e LTy S W, W Wedor . W W _ WM, ,HaleWe®e ., 7c? «®-FeT Tl =8

1. Research Obieétives ,

St B e A S

) . 1. When people use language spontaneously, they often do not adhere strictly to commonly
. accepted standards of grammaticality. The primary objective of this project is to develop
) flexible computer parsing techniques which can deal with the various kinds of
ungrammaticalities that arise, both on the lexical and the phrase level. The kinds of

ungrammaticality we wish to deal with include at the lexical level:

3 .- e misspelt words

e novel words whose role can be inferred from context

o erroneous segmentation between words (arising from the omission of spaces, or
the inclusion of spurious spaces or punctuation)

A N N S

o lexical items which are entered in one form and then changed to'another
and at the phrase level:

« input which is broken off and then restarted

e L U LAY h AN

¢ interjected words and phrases

o omitted or substituted words and phrases

.t T

f
g s g #4

o fragmentary or otherwise elliptical input

Lo

o agreement fallure

g

IR0

o idioms

:

2. The design space for parsers is very large. We aim to develop a set of design choices
which will result in parsers well suited to our primary goal. Thedesignchoiceswem
currently using are listed below. _

o bottom-up rather than top-down parsing, except in certain situations in which top-i
down predictaon is highly oonstrainlng

o use of several different parsing strategies, each tailored to a particular type of s
construction, and selected between on a dynamic basis . S

oprovlslonformowspensionandlaterrewmpﬁonofapamupmatamn
adjacent part of the input string

3. We intend to develop flexible parsing techniques in the context of interfaces to interactive i
computer systems. We are working with two types of interface language:

a. limited-domain natural languages, i.e. languages with the syntax of (possibly &
subset of) natural language, but whose semantics are limited to those of the
lmancﬂvosymmbelng interfaced to. AIR FORCE OFFICE OF SCIENTIFIC RESEAR'™ (A%80)
_NOTICE OF TRANSNL TTAL 10 DTIC
. , ‘ This technical report has been reviewsd nna 15
. approved for public release IAWAFR 19712,

68 08 08 . l 9 o Distribution is unlimited.

MATTHER J. KZRPER
Chief, Technical Inromnon Divisien

N et 8 &

.......... o
." .\)AAM‘LL?A h NV

. b. more restrictive artificial languages of the sort currently found in computer
interfaces

Later, we intend to investigate how easily the techniques developed for these kinds of
tanguages can be transferred to more general natural language.

4. We intend to‘ investigate formalisms for specifying dorﬁalndependem grammars in a
" convenient way for both of the types of language mentioned above.

,

2. Status of the Research Effort

2.1. Ovorvloﬁ
The work covered by this contract from its start in 1979 has involved several distinct phases:

¢ The initial development of the FlexP flexible parser for restricted domain natural
~ languages, and its evaluation in a gracefully interacting interface to an electronic mail
system, covering a period from the start of the contract in July 1978 to early 1881.

o Review of the initial design choices for FlexP in the light of this evaluation, leading to the.
formulation of the construction-specific approach to parsing, and its prefliminary
evaluation for applied natural language processing through the experimental parsers

. : CASPAR and DYPAR. This covered the period from early 1881 to the end of the year.

o Further development of the construction-specific approach to parsing through the design
o and construction of MULTIPAR. Like CASPAR and DYPAR, MULTIPAR is based on
construction-specific parsing techniques, but aims for much greater linguistic coverage.
The development of MULTIPAR stamd at the beginning of 1962 and is still continuing.

o Additional application of the construction-specific approach to flexible parsing to the
parsing of an artificial command language in the parser for the CousiNn command
interface, a graceful interface for the Unix operating system being developed largely
under other funding. This effort started in mid-1981, and represents a parallel track of
development of the construction-specific ideas mentioned above.

The initial design and development of FlexP and the lessons learned from it leading to the -
formulation of the construction-specific approach to parsing have been described in the two previous
annual reports and 80 will not be described further here. Even greater detail is contained in the
foowing publications: [2, 3, 1, 4,5]. This report covers only the period July 1, 1981 to June 30, 1882
and will therefore confine itself to the following topics: '

o The completion of the development and the evaluation of CASPAR and DYPAR.

o The design and continuing development of MULTIPAR.

"
:
:E

g . @ The design and development of the flexible parser for the CousiN user-friendly interface.

............

R

wid 58 i

TR
P

&,
»,

2
A
%

14
&
3

i

P

; N
X
N
(‘61
4

ca m—

Separate sections on each of these topics follow.

" 2.2. Final Development and Evaluation of CASPAR and DYPAR

The final development of both CASPAR and DYPAR was completed in a way faithful to their initial
designs which were described in last year's annual report and in greater detail in [2,3, 1,4,5). To
avo:d repetition, this report will confine itself to the evaluations and conclusions that were obtained

from our experienoe with these two simple parsers after first reviewing their motivation and design

goals.

CASPAR and DYPAR arose out of our evaluation of FlexP which showed that uniform parsing
strategies and grammar representations had significant disadvantages for the parsing of
ungrammatical input. Because :-arsing using several different construction-specific strategies was a

novel approach, we decided to try out the ideas in two simplified parsers, CASPAR and DYPAR,

instead of trying to implement a full-scale paizer immediately. CASPAR was designed to show the

sultability of construction-specific techniques for ungrammatical input, while DYPAR served as a .

vehicle to investigate the control problems of coordinating several distinct parsing strategies.

The conclusions obtained from our experience with CASPAR and DYPAR can be summarized as
.) . -

o The parsing strategy used by CASPAR was tailored directly to imperative case frames. .
This strategy proved highly successful in dealing with ungrammatical input, much more
successiul than the uniform strategy employed by FlexP. This result encouraged us to
believe that the degree of incisiveness afforded by construction-specific techniques
would provide similar advantages across a wide range of constructions.

o Besides performing well on ungrammatical input, CASPAR's construction-specific
strategy aiso in many cases performed more efficiently than the uniform strategy
employed by FlexP because of a decrease in the amount of searching necessary. This
suggested that a similar.gain in efficiency could be obtained through similar techniques
for other construction types.

o in the case of both CASPAR and DYPAR, the coordination of the various construction-
specific strategies was implemented through the code of the parsers themselves. This
would have made it very difficult to add new strategies to the ones aiready there. A more
flexible method.for the coordination of multiple strategies is clearly necessary to pursue
the concept of multi-strategy construction-specific parsing, since any parser of that type
with a wide linguistic coverage would in practice have to build up to a full range of
sirategies incrementally. Only with very small parsers like CASPAR and DYPAR s it
possible to think of all the required strategies in advance and to preprogram their

............

..........

h ML S AN T A A N 2 e L L e '-"J-"s}

" @ As we have shown elsewhere [4], ambiguities that cannot be resolved by a flexible parser

> . should be resolved in a user-friendly system through a tightly focused interaction with the
person who provided the input. Focused interaction requires localized representation of
. ambiguity, and our experience with CASPAR suggests that this is easier to achieve using

a construction-specific rather than a uniform approach. In CASPAR, we analyzed each

construction type for the possible types of ambiguity it can give rise to, devised

_ representations for these ambiguity types, and constructed the parsing techniques so

that they could recognize each relevant type of ambiguity and generate the appropriate

. representation. Such localized ambiguity representations would have been impossible to
construct with the uniform approach of FIexP

o To be widely applicable, limited-domain parsers must provide a convenient way to define
languages in the class that they recognize. The construction-specific approach offers
the advantage that its specialized parsing techniques can operate directly from such
domain-oriented language definitions without the need for a time-consuming compilation
phase as was necessary with the uniform approach of FlexP. This reasoning rests on the
assumption that the most convenient way to express the language from the application
point of view is sufficiently close to the "natural™ constructions of the language that
direct interpretation is possible. Our experience with CASPAR suggests that this
assumption is valid.

These conclusions listed here have served as guiding principles in the development of the
MULTIPAR parser and of the parser for the CousiN user-friendly interface as described in the
following sections ' '

2.3. MULTIPAR g
Given the largely positive experience with CASPAR and DYPAR, we embarked around the
beginning of 1962 on the design and implementation of a new parser that we call MULTIPAR, based
on the same construction-specific ideas as CASPAR and DYPAR, but incorporating many more
- construction types. We viewed MULTIPAR as a vehicle for testing whether the construction-specific
approach scaled up from the simple pilot parsers already constructed to a parser with adequate
covmefonmdlsticnatumlhnouaqelnm; ' '

DYPAR and CASPAR used two and three different parsing strategies respectively, coordination
between these strategies was simple and was "hard-wired" directly into the control structure of the
parsers themseives. The much larger number of strategies needed to provide adequate linguistic
coverage and the need 1o make the addition of new strategies easy prechided this "hard-wired"
spproach for MULTIPAR. The two principal initial objectives in the development of MULTIPAR

o The development of conumctlon-speclﬂc mﬁegies for a number of additional -
construction types.

r A Y w W L Y a Yy T e Lo T u AT LY, . e e s e A
e o' aois Ay WV MY R S A M W ke Y Gu Wi 7 A iy By Ty wk ol o e LR VAl S Y Sl e a®

" e A contrd! structure which allowed muitiple strategies to interact together without thelf
coordination being "hard-wired” into MULTIPAR.

We will describe progress on each of these points separately.

' 2.3.1. Additional constrhctlon-specmc techniques

. In CASPAR and DYPAR we. concentrated on two -main kinds of construction: imperative case
frames and. linear patterns. Clearly, these types fall far short of covering all the constructions
common in restricted domain natural languages, so to develop MULTIPAR, it was necessary 1o
5 identify and devise specific paysinq techniques for those constructions commonly found in such
languages, but not covered by our existing parsers. Such constructions include: noun groups (with
determiners, adjectives, classifiers, and post-nominal cases), declarative and interrogative case
frames (iri addition to the imperative ones we already handie), wh-questions, relative clause modifiers,
conjunction at the noun group and clause level (general use of conjunction may not be necessaryina .
restricted domain language), and comparatives. We have compiled these construction types as a

minimal set necessary for. basically habitable restricted-domain natura) languages. Other
constructions may have to be included later.

VR

For each of these construction types, the following steps are necessary:

DN R R AR
. L]

i

« analyze the structure of the construction, paying particular attention to highly restricted,
or otherwise easy to identify components;

.mmmummmmmmamommmmmmct
mlomofheoonﬁucﬂoneomcﬂyanddﬁcbnﬂr

.mmmmmmmmwmmdmuomnwmhm

5 ‘ construction is used incorrectly or ungrammatically wherever such recovery is possible.
' In keeping with the construction-specific approach, all this work should be oriented to extracting the
: maximum possible leverage from characteristics specific to the individual construction types.
\"L Bymmdmoomnctpeﬂodmaﬂsmosubiectolmisreport.wehadcqmpletedthesestepsfor

some, but not all of the construction types listed above. The construction types covered during that
period include noun groups (with determiners, adjectives, and classifiers), declarative and
. interrogative case frames, and wh-questions.

=3
i

‘“J"‘.:‘

o w L al TH TR P VW g WO, W L, W g Wy Wy g MY T e e g TR s e # o e T 4T s -~ g & e
IO > ciot i ¢ ke Py Ziting Wiy ioia A Wide ANLASEMaR MR i s ci © SolL N M Pl Tt Bt M AR A S AL M e . -t ..

2.3.2. Control structure
~* Asnoted above, CASPAR and DYPAR used two and three different parsing strategies respectively.
; * Furthermore, coordination between these strategies was simple and was *hard-wired" directly into

3 ' the control structure of the parsers themselves. The much larger number of strategies needed to
: provide adequate linguistic coverage and the need to make the addition of new strategies easy
55 precluded this "hard-wired" approach for MULTIPAR. Instead, we required a control structure which

éiiows. large numbers of s;trategies to cooperate on and share information about the parsing ofa given
input. Based on these oonsideraxion_s and our previous experience with flexible parsing, we
established the following goals for the control structure of MULTIPAR:

o Integration of a lérge ndmber of highly specific and specialized parsing strategies. There
may well be several strategies applicable in any given situation.

o Ability to parse bottom-up from the best information available. It is never possible to rely
absolutely on any specific piece or feature of a construction being correct.

i

¢ As much top-down control as possible. While bottom-up parsing is necessary to form an
initial hypothesis about what the structure of an unput may be, it is inefficient once that
hypothesis has been formed.

o Clean separation between domain semantics and parging strategies. This is most

sy important because of our intention to apply MULTIPAR to & significant number of
. different domains.
S The foliowing design for MULTIPAR covers the first three of these_ goals and neither addresses nor
% contradicts the fourth. The control structure of MULTIPAR involves the following three kinds of
3! . " ‘
§'§ etasks: A ta.d{ represents the goal of recognizing as much as possible of a given
" . subsequence of the input as a certain kind of grammatically specified object (e.g. a task
i might be to recognize as much as possible between the second and seventh words of "is
i the price of a display terminal more than a hardcopy terminal" as a <comparable-object,
- where <comparabie-object> was a grammatical subcategory; remember we are working
R with restricted-domain language, and therefore, semantic type grammars). Such tasks
{‘ may specify that the recognition is to be left or right anchored if the whole subsequence
P cannot be parsed as the desired object. MULTIPAR is driven at the top-level by a task to
f recognize the whole of an input line as a grammatical super-category, which includes all

complete sentences as well as individual objects, and anything else the system being
interfaced to is prepared to interpret in isolation. In cases where elliptical replies are
expected, the top-level task might be to recognize an object of the type expected.

. L
A

o strategies: A strategy is a method for recognizing a given grammatical constituent.

_ There may be several strategies applicable to any given grammatical category, and a

. given strategy may apply to more than one type of constituent. Strategies are indexed by
. grammatical category. Each strategy has a simple initial test based on pattern matching

"\ TN RN S RN Y e

£ . 2 N W - Tt LT L LT et
o Gour Vh it s "ot et N Pt G, 240 B S R R T S B B AR AT R S TP e e e) P (Ul R R e e LA - W e e . - .

s : : T

to chéck applicability to a specific task (i.e. recognizing a given constituent in a given ;
context with possible left or right anchoring), plus a more complicated procedural test of 1

RLBEN o L

. applicability to be applied if the pattern match succeeds. Each strategy has an indication '
- of the amount of grammatical deviation it is designed to cope with, which will correspond J
)) - roughly to the amount of effort needed to apply it. Strategies may also be limited to left or]
5 right anchored recognition. !

e hypotheses: An hypothesis is the result of applying a specific strategy to a specific task

. and constitutes the result of the parsing attempt, thus specified. Hypotheses are

- recorded globally in a blackboard-like structure. Both successtul and unsuccessful

« attempts are thus recorded, and constitute a way of sharing effort between different
strategies. The successful ones are analogous to (partial) parse trees.

LGRS, S SR

These three types of structure work together as follows:
1. The top-level task is set up as described above.

2. Given a task, all strategies whose iﬁdexing identities them as suitable for that task are
identified, and grouped according to degree of grammatical deviation handled.

3 LA St b

3. The strategies are applied in order of ascending ungrammaticality until one succeeds. All
strategies for a given level of ungrammaticality are applied (conceptually) in paraliel.

4. Application of a strategy means first checkund for a precomputed result in the global
‘ blackboard of hypotheses, then applying the pattern-match test, then the procedural test,
. andmenifma!succeeds.mebodyofﬂ\estrategy

' | §. The body of a strategy can set up new tasks, andmestrategyasawholesucwedsifmo L
'y " sub-tasks succeed.

k& ' 6. A task succeeds if one o more of its strategies succeed.

Al

To make the preceding description rather more concrete, we present some example strategies, and
show how they would function in a parsing some example inputs. The linguistic examples are drawn
from the domain of a computer sales assistant. A very simple MULTIPAR strategy is:

StrategyName: comparative-sentence

o aLEY

1 Ml s,

Recognizes: <{complete-sentenced

b s AL S

Pattern: [<be> $X <comparative) $Y]

Body: set up subtasks of recognizing input segments represented by X and Y as
{comparable-objecs.

) Most of the.work in this stt'ategy is done by the simple pattern-matching rule which is its initial test. To
" see how it might operate consider the input

- A Mo o At it el Sbdi PRl S R e A R I R P S S T I T SR S T T T
'-.-‘1..1-:“_'72"1_,.":..;"{.Clﬁ.\»t.('\;u"\',\'.\‘ .. e T el et at At a®at e Pttt TTa o - A

Is the prite of a display terminal more than $100 _
The strategy would be applicable, and would isolate "the price of a display terminal” as X and "$100"
as Y. The two subtasks of parsing X and Y as <Comparable-object>s would then be established, with
the first being parsed by a strategy which 'recognized constructions of the "(attribute> of <object>"
type, and the second which recognized strings beginning with a dollar sign and followed by digits as
sums of money. The strategy would also check that the two quantities were comparable before
rebortmg success, trying coercion at a more flexnble stage, and thus making sense of "isa dlsplay

. terminal more than $100".
™ .
A more complicated strategy is:
» StrategyName: imperative-caseframe
!3 Recognizes: <complete-sentence>
t“; Pattern: - [€action-word> $X] (a more flexible version would not be left anchored)
A%) : :

Body: Obtain the case frame of the action word. Scan the input segment represented by
% X for case markers from that case frame. This divides X up into a number of
i segments separated by case markers. Set up tasks to recognize objects of the
\f type indicated by the preceding marker for each segment, making allowance for
x direct and indirect objects
5 This second strategy is very similar to the dominant strategy of the CASPAR parsér mentioned above.
' ; An example input to which it would be applicable is:

: replace the display terminal with a teletype
Here "replace” is the action word and “with" is a marker from its case frame. This isolates “the
. display terminal” and "a teletype which can be parsed as objects of the appropriate type, in this

9
;. ~ case <component-sets.

- For an example of flexibility, suppose the case marker "with" is missing, so that the two component
"y phrases cannot be isolated. The strategy then sets up tasks to recognize each of the missing case

o]

j'.; fillers in the string that it cannot split up. Since the strategies always operate to recognize as much of

Y
LY

the given subsequence as possible as the requested category, but will ignore parts that they cannot
deal with..tﬁe attempt to recognize (in left-anchored mode) a component in "the display terminal a
teletype”, will recognize "the display terminal”, fail to recognize "a teletype”, but isolate it, thus
leading to its recognltion on the second attempt to parse still unrecognized strings as the fillers of
unfilled case frame slots.

Of course, there is also no guarantee, given the many roles that individual prepositions fill, that a

sy \ riakootiedys 8 rlig

T T
s'.

A

A
LARRAN

v &t
C o

':’ o ldn 'lf_‘ 2

R

SO
XN 4

A N

TR 2205725

case marker that is found is really a case marker for the given case frame, as in;

replace the display términai wit'h a teletype with a paper-tape reader
Here both "with"s are found, leading to two different ways in which the input can be split up for
further parsing. The correct reading is finally preferred because it accounts for more of the input, the
strong domain constraints making it easy for the parser to refuse to accept "the display terminal with
a teletype” as a {component-setd. - .
Imblementation of the above design did not start during the contract pefiod that is the subject of
the present report. However, at the time of writing, implementation has begun.

2.4. Design and Development of the Flexible Parser for fhe CousiN Interface

At an early stage in the development of the multi-strategy, construction-specific approach to
parsing restricted domain natural language, it became apparent to us that a similar approach could .
be used to parse artificial command languages as well. Accordingly, starting from the beginning of
the contract period that is the subject of the present report, we began to develop a flexible parser .
based on this approach for the CousiN interface to the Unix operating system, which we are
developing under other funding, and which uses an extended version of the standard artificial Unix
command language for input. This effort constituteg'a development track for the construction-
specific approach parallel to that represented by CASPAR and DYPAR and their successor,

" MULTIPAR. The two tracks, however, are not completely independent, since several of the specific

techniques developed for CASPAR also turned out to be useful for the CousiN parser, as the
description in the remainder of this section will show. More details of the CousIN system and its
parser can be found in [6). ' '

The command language for COUSIN is the preSent Unix Ianguagé. minus the constructions at a
level higher than single commands, but supplemented by other language features that make it easier
for the user to specify commands. The standard Unix format for command lines is: '

<command-name) <options> <arguments>
where <options is a possibly empty sequence of flags, single characters preceded by dashes, and
option markers, also single characters preceded by dashes which idéntify the ne);t input token as an
optional parameter. The <arguments> are a fixed order sequence of parameters to the command that

" are not identified by any markers, although they may in some cases be optional. An example is:

c¢c -w -0 -0 bar foo.c fum.c

which is a call to the C language compiler (cc) with options "w" (suppression of warning diagnostics)
and "O" (obiei:t code improvement), a flagged option “o" (which writes output to the file named,

gyiitig

(37

Pty ud A
PP E N

pral

PN
e
734

- 3
KL

(Ee -

SRS

-

L)

oy
APl LA T

a- g

b S]
LA

R r L Ll -

R Skt NN

O
-

10

"bar”), and tWwo arguments foo.c and fum.c, the files to be compiled. Conceptually, cc actually hag
'one argument, the file to be compiled, which may be filled an arbitrary number of times; this type of
argument is called a multiple argument. A command with two arguments is "cp"”, which copies a list

of files, its first argument, into a directory, its second argument, as in:
cp file1 tile2 dir

-~ CousiN makes two extensions to the standard Unix language: the addition of explicit markers for
command arguments as a supplement to the present system of purely positional specification, and
the addition of full word flags and markers for options as a supplement to the present system of smgle

characters preceded by dashes. So the above examples ‘could be written for instance as:

cc -0 no-warnings foo.c fum.c output-to bar

cc onto dir from file1 file2
When whole-word markers are used, the ordering mstﬂcﬁons of standard Unix are relaxed. Note that
this extension makes the language similar in many ways to the kind of language handled by CASPAR
- a command verb followed by a set of marked cases. The major differences are that some case
markers stand by themselves and have no fillers, and that the Unix positional syntax is still included in
the language. This similarity is exploited by some of the fiexible parsing techniques described below.

The muilti-strategy construction-specific parsing algorithm that we have so far developed for this
language is as follows: : '

1. Command Identification: In much the same way as CASPAR finds the verb of its
sentence, the COUSIN parser determines which command is being invoked, and locates
the syntax description - positional and case information - for the command.

2. Standard Unix parsing: Using this syntax information the remaining part of the
command line is parsed as though it conformed to the standard Unix syntax for that
command, taking only Unix style options and positionally specified arguments into
account. If this step is successful, parsing is complete, and no attempt is made to use the
case style syntax. This ensures that correct Unix commands which happen by

~ coincidence to use case marker keywords will be recognized correctly.-

3. Extended Unix parsing: If the standard parse is unsuccessful in any way, the next step
is to parse the line according to the extended syntax. The procedure here is the CASPAR
case marker scanning algorithm, modified only to deal with case markers with no
corresponding case fillers; i.e., a scan is made for any argument marker keywords, or any
option keywords, and the arguments and options thus flagged are extracted.

4, Fiexible Unix parsing: Otherwise, if any of the input string is still not accounted for
after this step, a more fiexible algorithm is appiied. This algonthm is designed to deal
with situations in which the user has:

o used a mixture of marker a:_'od positional notation

et T S T e T e e e T e
- . .. - A A R}
RIANADAA "N

[SO

v ek S A aTaase B _BaSE A

N St e “ .
Aty A st alte st atatatatatata

_ e misspelt input tokens, either arguments or markers

M . o used positional notation in the standard Unix style, but has got the arguments out
; of order

 omitted one or more required arguments

o used standard dash notation with single character flags and markers for options,
but has omitted the dash or put the option string other than at the beginning of the
input.

Two basic techniques are involved in this flexible style of parsing: scanning for misspelt
markers and options, and comparing permutations of the arguments against the input
tokens. The first of these is a CASPAR style marker scan, with the possible targets for
correct spellings restricted to be markers of the arguments not yet filled. The second
technique is specific to the positional style of construction allowed by Unix, and is kept

combinatorially tractable by the fact that no Unix command has more than three
arguments. . .

An example will illustrate hqow this algorithm operates. Suppose, for instance that the user types:
" cp onto dir form {il2 file3 '

~ when he really intended to type:
cp onto dir from file2 file3 . _
Assume that "dir" is a valid directory name, "file2", "file3" are valid file names, but "onto", “form",
; ‘and “from™ are not valid files or directories. The command cp has two arguments, SOURCE and
: DESTINATION. SOURCE is a muttiple argument of readable files. DESTINATION is an ordinarf
argument of either a writable directory, ora éreatable file (which may or may not already exist). There
is an additional restriction that it DESTINATION is a file, SOURCE may contain only one file. The
- default order is SOURCE DESTINATION, ' '

Standard Unix syntax does not work, so extended Unix syntax is tried. The marker scan comes up
with "onto™, and “dir" is recognized as a proper DESTINATION, and there are just three remaining
arguments which could be assigned to SOURCE, but "form” and "fil2" have failed maiches with
SOURCE, so extended Unix syntax does not work, and flexible parsing must be tried. Note that if
"form"” and “fii2” were suitable files for SOURCE, there would have been no need to employ the extra
flexibility. The first flexible ctep is to scan for misspelt markers from left to right. 'Extended Unix
syntax has already accounted for "onto" and "dir", so the scan starts from "form", which is of course
corrected to “from®. Since "from" is the marker for SOURCE, "fil2" is required to fill the SOURCE
argument, and since "file3" satisfies the restrictions for SOURCE, and since SOURCE is a multiple
argument, "file3" -aiso is taken into the SOURCE 'argument.“ Since “fil2" is required to go into
SOURCE the fact that it fails the restrictions on the argument trigger an immediate attempt to spelling

...........
- et Ay et W e T T e Lt T .
............
SRR AR L e, AR

.....
........
......

correct it. This attempt succeeds, and the parse is correct and complete, without it being necessary
to invoke the second permutation phase of flexibility.

The implementation of the Hexible parsi_ng algorithm described in this section was completed
during the contract period cbvered by this report, and incorporated into the CousIN user-friendly
interface. The algorithm has proved efficient in the recognition of grammatical input, and robust in its
handling of ungrammatical input. In addition, its construction-specific character has made it easy to
) produce ﬂie localized representations of ambiguity in its output which are so important for graceful
; interaction with the user to resolve the ambiguity (see {4]).

il

3. Publications .
The last of the publications listed below discusses the COusIN interface project within which the
work on flexible parsing for artificial command languages was conducted.

1. Carbonell, J. G. and Hayes, P. J. Dynamic Strategy Selection in Flexible Parsing. Proc. of 19th
Annual Meeting of the Ass'oc for Comput. Ling., Stanford University, June, 1981, pp. 143-147.

2. Hayes, P.J. and Mouradtan.G V. "Flexible Parsing.” American Journal of Computational
Uinguistics 7, 4 (1981), 232-241. '

o 3. Hayes, P. J. and Carbonell, J. G. Mliltl-Strategy Parsing and its Role in Robust Man-Machine
. Communication. Carnegie-Mellon University Computer Science Department, May, 1981. i

4. Hayes P.J. A Construction Specific Approach to Focused Interaction in Flexible Parsing. Proc. of
19th Annual Meeting of the Assoc. for Comput. Ling., Stanford University, June, 1881, pp. 149-152,

8. Hayes, P. J. and Carbonell, J. G. Mﬁl_ti-Strategy Construction-Specific Parsing for Flexible Data
Base Query and Update. Proc. Seventh Int. Jt. Conf. on Artificial Intelligence, Univ. of British
Columbia, Vancouver, August, 1981, pp. 432-439.

6. Hayes, P. J. Cooperative Command Interaction through the CousIN System. Proc. of the Int. Conf.
on Man/Machine Systems, University of Manchester lnstitute of Science and Technology. London,

July, 1882, R

5

»

4. Professional Personnel _ 4

3 &
1. Philip J. Hayes . 1

D Sc, 1977, "Some Association-Based Techniques for Lexical Disambiguation by S
Machine". . '

Y1 _1®

2. George V. Mouradian -
M Ph, 1878.

I

- r L TSI, e,

R RO RS o h - Docdh pvrt SN RN S - i AR LT A et Wy g iy - PACIH A D6k i et i R AR ACEA N T L N RS PR LA

N | 5. Interactions | :
v Ongoing consultation with Dr. Jaime Carbonell, also a faculty member in the Computer Science ;
. Department of Camegie-Mellon University, but not funded under this contract.

:
! ‘
)| - ;
: .)
3
d
T
:
Fj i
2 Y
i
L- LS
:
E ,
{ L]
N
-t "
£ ;
%
:
t
g
i 4

T e T T e L N N ‘

